Fractional Sobolev norms and BV functions on manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Γ-convergence, Sobolev norms, and BV functions

We prove that the family of functionals (Iδ) defined by Iδ(g) = ∫∫ RN×RN |g(x)−g(y)|>δ δ |x− y|N+p dx dy, ∀ g ∈ L(R ), for p ≥ 1 and δ > 0, Γ-converges in L(R ), as δ goes to 0, when p ≥ 1. Hereafter | | denotes the Euclidean norm of R . We also introduce a characterization for BV functions which has some advantages in comparison with the classic one based on the notion of essential variation o...

متن کامل

Non-degeneracy of Sobolev Pseudo-norms of fractional Brownian motion

Applying an upper bound estimate for small L2 ball probability for fractional Brownian motion (fBm), we prove the non-degeneracy of Sobolev pseudo-norms of fBm.

متن کامل

Relations between Sobolev and Kantorovich norms on manifolds with curvature conditions

We prove several multiplicative inequalities relating the Kantorovich norm with the Sobolev norm for functions on a Riemannian manifold satisfying certain curvature conditions.

متن کامل

Characterization of Sobolev and BV Spaces

The main results of this paper are new characterizations of W (Ω), 1 < p < ∞, and BV (Ω) for Ω ⊂ R an arbitrary open set. Using these results, we answer some open questions of Brezis [11] and Ponce [32].

متن کامل

Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds

We give a new proof of a theorem of Bourgain [4], asserting that solutions of linear Schrödinger equations on the torus, with smooth time dependent potential, have Sobolev norms growing at most like t when t→ +∞, for any > 0. Our proof extends to Schrödinger equations on other examples of compact riemannian manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2019

ISSN: 0362-546X

DOI: 10.1016/j.na.2019.06.014